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The calculation of surface tensien for simple liquids 

M V BERRY, R F DURRANST and R EVANS 
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 ITL. UK 

MS received 2 June 197 1 

Abstract. We calculate surface tension using the Kirkwood-Buff theory, assuming a smooth 
variation of density between liquid and vapour (in contrast to the Fowler theory. where the 
density changes abruptly), and approximating the radial distribution function by its liquid 
value throughout the transition zone. Comparison with experiment enables us to estimate 
the thickness of the interface, for which we obtain values in fair agreement with those given 
by other theories. 

1. Introduction 

The theory of Kirkwood and Buff (1948, see also Buff 1955), provides a rigorous formalism 
which enables the surface tension 7 of simple liquids to be calculated, provided the 
interatomic potential q5(r), and the two-particle distribution function n2(r1 , r 2 )  in the 
liquid-vapour region are known. However, the latter quantity is not well understood, 
so that approximations must be made if the theory is to be used. The simplest assumption 
is that the fluid properties change abruptly from their liquid to their vapour values : 
if, in addition, the vapour density is set equal to zero, then the Kirkwood-Buff formula 
reduces to an earlier expression due to Fowler (1937), which has recently been calculated 
for a number of fluids using modern data by Shoemaker et al(1970), who obtain agree- 
ment with experiment to within 25 % for all cases except neon. 

In this paper we approximate to n2(r1, r2) in a rather more realistic way. by writing 

( 1 )  

where n(r) is the density of the fluid at r and g(r) is the radial distribution function of the 
bulk liquid. The formula (1) was first suggested by Green (1960), and has recently been 
discussed and applied by Berry and Reznek (1971). The exact Kirkwood-Buff formula 
takes on a simple form when (1) is used, if we take the density as n(z)  where z is a coordinate 
perpendicular to the interface, z >> 0 being in the vapour, z << 0 in the liquid, and 
z = 0 somewhere in the interface. 

nz(r11 y2) = n(r1)n(vzlg(lr2 - r d  

By further assuming the simple exponential form 

for the density, we obtain a formula for 7 containing the single adjustable parameter L. 

t Now at Berkeley Nuclear Laboratories, Berkeley, Gloucestershire. UK. 
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which is a measure of the thickness of the density transition zone. We estimate L by 
comparing the experimental values of y with our formula, and obtain results in fair 
agreement with those of Eyring et a1 (1964), and Egelstaff and Widom (1970), who 
estimate the same quantity by completely different methods. 

2. Theory 

In the theory of Kirkwood and Buff (1948), the surface tension y is calculated directly, 
as the tangential force acting across a vertical strip of unit width. If we define 

R = Y Z - Y I  = ( X ,  Y,Z) 

then their result can be expressed as an integration over the two positions Y ,  and r2  
at which the two-particle distribution function is evaluated, namely (Buff 1955) 

d$(R) X z  - Zz 
dz, J J dRn,(z,, R)- ~ 2 - 0 c  dR R ’ 

y = (3) 

The idea underlying this formula is that the stress tensor is anisotropic in the liquid- 
vapour transition region ; this approach to surface tension theory has pedagogical 
advantages over formally equivalent arguments involving surface energy, as has been 
emphasized by one of us (Berry 1971). 

In order to use the approximation (1) in the basic formula (3), we realise that equiva- 
lence of X and Y enables us to write 

X 2  -zz = i (RZ - 3.p) 

and that the R integration can be written in cylindrical-spherical coordinates as 

J / J dR = Jozff d@ J: dRR s_”, dZ. 

Substitution of the approximation (1) into (3), and use of these relations, followed by an 
integration by parts, then gives 

dn(z,) R y = -J = cc dR-g(R)( d$(R) - J-Rdz(Rzz-zz) dz,-n(z,+z) 
2 0  dR J-, dz, 

Any reasonable density profile may be employed to calculate y, and we choose the 
simple exponential form given by equation (2). After some lengthy algebra, this yields 

This expression reduces for L = 0 to the result of Fowler (1937) 
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3. Calculations 

In order to apply equations (5) or (6), it is necessary to  know the intermolecular potential 
$(R). We assume this to be of the Lennard-Jones form 

We calculate y for nitrogen, oxygen, methane, neon and argon in their own vapours, at 
temperatures for which g(R) data are available. The formulae (5) and (6) are very sensitive 
to the precise values of and 0, so we follow Shoemaker et a1 (1970) and calculate these 
parameters from measurements of the saturated vapour pressure p and the configura- 
tional energy U at the temperatures with which we are dealing. Then E and 0 are given 
exactly by 

where 

and N o  is Avogadro’s number. 
As our source of data we used the compilations in ‘simple dense fluids’ (Frisch and 

Salsburg 1968) for all cases except argon, whose values of g(R) were provided by Clayton 
(unpublished). 

Using these data, the surface tensions y were calculated from equation (5) as a function 
of L,  and the results plotted as figure 1 ; it is seen that all the curves exhibit a maximum 
when L is somewhat less than unity. The points where the experimental values of ;I 

intersect the curves are marked by circles (where there are two possible points, the one 
with the larger, more physically realistic, value of L is taken). These values of L are 
listed in table 1, together with the experimental value (jlexp) of surface tension, and the 
value ( y ( 0 ) )  given by the Fowler approximation, which corresponds to the case L = 0. 
The differences between our values of y(0) and the values calculated by Shoemaker et a1 
(1970) are insignificant except for the case of argon, where we use different data. 

The experimental measurements of y are subject to uncertainties of at most 1.69, 
for all cases (Frisch and Salsburg 1968. chap 2) except neon where we certainly expect 
the error to be less than 3 % (1 significant figure in table 1). In terms of the deduced 
value of L, these experimental errors imply an uncertainty about 0.2 8, for neon, and 
0.1 8, for the other fluids. 

We take 3L as the thickness of the transition zone, and obtain an estimate m ,  
(table 1) for the number of molecular layers by dividing by the intermolecular distance 
D, given by 

molecular weight 1)3  

D = (  density x N o  1 
This expression for D, which implies a simple cubic structure, was chosen, rather than 
the slightly larger values corresponding to the first peak in the radial distribution function, 
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because we want to compare our values m,,  with the number of layers m2 (table 1) 
which we estimated from the density curves calculated by the ‘method of significant 
structures’ (Eyring et al 1964), which is a lattice theory. We have also included in table 1 
the values m3 for the number of layers derived by Egelstaff and Widom (1970), on the 
basis of an interpretation of the constancy of the product of y and the isothermal com- 
pressibility for a wide range of substances near their triple points. 

4. Discussion 

I 2 3 

L ( 8 1  
Figure 1. Calculated surface tension ( y )  against interfacial thickness (L) .  A Oxygen at 
77 K ;  B methane at 96 K ;  C methane at 121 K ;  D nitrogen at 64 K ;  E nitrogen at  77 K ;  
F argon at 84.3 K ;  G neon at 33.1 K. Open circles are the experimental values of y .  

Table 1 

Substance Temperature ycxp (dyn cm- ’) r(0) L(A) D(A)  m, = 3L/D m, m3 
W) 

Nitrogen 64 12.0 13.42 1.73 3 4  1.36 0.8 
2.03 1.3 Nitrogen 17 8.9 12.08 2.65 3.9 

Oxygen 71 16.5 18.33 1.56 3.5 1.34 0.9 
Methane 96 16.0 15.90 1.2 3.9 0.92 0.8 
Methane 121 11.3 14.60 2.45 4.0 1.83 1.3 
Neon 33.1 2.7 4.49 3.1 3.1 3.0 
Argon 84.3 13.2 13.10 1.1 3.6 0.92 0.9 1.6 

The curves in figure 1 suggest that those cases (methane at 96 K and argon at 84.3 K) 
where the Fowler approximation is in very close agreement with experiment are for- 
tuitous. 
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From table 1 it is clear that there is a fair order of magnitude agreement between the 
number of molecular layers in the interface as estimated by us (ml), Eyring et a1 (1964) 
(m2),  and Egelstaff and Widom (1970) ( m 3 ) ;  however, our interfacial thicknesses are 
generally rather larger than those predicted by the other theories. In the cases of 
nitrogen and methane, L and m ,  (and m2) increase with temperature, as they surely must 
in order to account for the considerable decrease in y .  

The case of neon, where y is very small, provides an interesting test of our approach 
to surface tension theory. The Fowler approximation grossly overestimates 7 (table I ) 
and it is, therefore, necessary (figure 1) to take a rather large value for the interfacial 
thickness. This is exactly what one would expect, in view of the relative weakness of the 
intermolecular potential in neon (E,,,,,~E,,~~~ 2 0.25). The small value of 7 can thus be 
explained within a purely classical framework provided the Fowler approximation is 
not made, and it is not necessary to invoke quantum effects, as suggested by Shoemaker 
et al(1970). (Such effects, while perhaps just appreciable in neon (Egelstaff 1967), would 
certainly not be expected to grossly alter the value of 7 . )  

Finally we must emphasize that our method, and also the Fowler approximation. 
would yield nonsensical answers if the Lennard-Jones parameters were not estimated 
in a selfconsistent way, from measurements on the liquid at the temperature under 
consideration, as indicated by Shoemaker et a1 (1970). 
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